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SIGNAL-DETECTION ANALYSES OF CONDITIONAL DISCRIMINATION AND DELAYED
MATCHING-TO-SAMPLE PERFORMANCE

BRENT ALSOP

UNIVERSITY OF OTAGO

Quantitative analyses of stimulus control and reinforcer control in conditional discriminations and
delayed matching-to-sample procedures often encounter a problem; it is not clear how to analyze
data when subjects have not made errors. The present article examines two common methods for
overcoming this problem. Monte Carlo simulations of performance demonstrated that both methods
introduced systematic deviations into the results, and that there were genuine risks of drawing mis-
leading conclusions concerning behavioral models of signal detection and animal short-term mem-
ory.
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Signal-detection analyses are often used to
measure stimulus control and reinforcer con-
trol in conditional discriminations and in de-
layed matching-to-sample (DMTS) proce-
dures. In such procedures, subjects are
usually presented with one of two sample
stimuli, and they must identify which sample
was presented by choosing between two alter-
native responses. Correct identifications are
reinforced on some schedule of reinforce-
ment. It is not uncommon, however, for sub-
jects to make few or no errors of one type or
another in such tasks, particularly if the dis-
criminability between the sample stimuli is
high or the payoff matrix has produced sub-
stantial response bias. Zero responses in error
cells of a detection matrix are problematic
because they complicate analyses using signal-
detection measures of accuracy or response
bias (e.g., Alsop & Davison, 1991; Davison &
Tustin, 1978; Green & Swets, 1966); for ex-
ample, the analysis might entail division by
zero.

A number of ‘‘correction rules’’ (Hautus,
1995) allow calculation of measures of dis-
criminability and response bias when detec-
tion matrices contain zero responses in cells.
One correction method, known as the 1/
(2N) rule (Macmillan & Kaplan, 1985), re-
places extreme proportions of zero or one
with values of 1/(2N) and 1-1/(2N), respec-
tively, where N equals the number of trials on
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which the proportion is based. This method
appears to have had little or no use in behav-
ioral studies of signal detection or DMTS per-
formance. The second method simply replac-
es instances of zero responses with one
response. Here, this will be called the 1s-for-
0s rule. A number of articles in JEAB have
used this method (e.g., Alsop & Davison,
1991; Jones & White, 1992; Watson & Blam-
pied, 1989). More recently, some articles in
JEAB (Davison & Nevin, 1999; Godfrey & Dav-
ison, 1998, 1999; Nevin, Milo, Odum, & Sha-
han, 2003) have advocated, following from
Hautus’s analysis, a different method to min-
imize the problem of zero (or very low) error
rates. This method, the log-linear rule, in-
volves adding 0.5 to every cell of the detec-
tion matrix, and if it is used, then this cor-
rection rule should be applied to all data in
the analysis, even those cases in which there
is no problem of zero errors.

Here I argue that correction methods, in-
cluding the log-linear rule, need to be treated
with more caution. Although they allow ordi-
nal comparisons among conditions, they also
can introduce systematic deviations into the
results, and higher-order quantitative analyses
and modeling can produce misleading re-
sults.

To assess the effect of applying the correc-
tion rules to data from detection procedures,
I generated hypothetical data using the Dav-
ison and Tustin (1978) behavioral model of
signal detection. This model is based on the
generalized matching law (e.g., Baum, 1974).
Following a presentation of one sample stim-
ulus (S1), the model predicts that perfor-
mance can be described by the relation

mailto:balsop@psy.otago.ac.nz


58 BRENT ALSOP

aB R11 115 cd , (1)1 2B R12 22

and following a presentation of the other
sample stimulus (S2), by the relation

aB 1 R21 115 c , (2)1 2B d R22 22

where B11 and B22 are numbers of correct
responses and B12 and B21 are numbers of
incorrect responses. The parameter c mea-
sures any inherent bias for one of the re-
sponse alternatives, and the parameter d mea-
sures the discriminability between the sample
stimuli. The parameter a measures the sen-
sitivity of behavior to changes in the ratio of
reinforcers (R11/R22) obtained for correct
B11 and B22 responses. For the generation of
the hypothetical data, no inherent bias was
assumed (i.e., c 5 1), and the sensitivity of
behavior to changes in the reinforcer ratio,
a, was always set to 0.9 (e.g., Davison & Mc-
Carthy, 1988). A value of d was selected (e.g.,
d 5 10) with a particular ratio of reinforcers
(e.g., R11/R22 5 1:9). This allowed calcula-
tion of the expected ratio of responses (B11/
B12 and B21/B22) following S1 and S2 presen-
tations using Equations 1 and 2, and these
ratios were then converted to proportions. In
order to approximate actual performance,
Monte Carlo simulations used these expected
proportions to generate values of B11, B12,
B21, and B22 for a predetermined number of
S1 and S2 trials. The log-linear rule and the
1s-for-0s rule were applied to these data.

DISCRIMINABILITY IN DETECTION AND
DELAYED MATCHING-TO-SAMPLE

PROCEDURES

In the first analysis, simulated B11, B12, B21,
and B22 response totals were generated for
five different reinforcer ratios (9:1, 3:1, 1:1,
1:3, 1:9) at each of three different levels of
stimulus discriminability (i.e., d 5 10, 100,
and 1000). Initially, the simulations assumed
500 S1 trials and 500 S2 trials in each condi-
tion. This mimics studies in this area that col-
lect the data from a relatively large number
of trials (e.g., Alsop & Davison, 1991; McCar-
thy & Davison, 1979; McCarthy & Davison,
1980). The two correction rules were then ap-
plied to these data. At each level of discrim-
inability, point estimates of discriminability

were calculated for each reinforcer ratio at
each level of discriminability using the equa-
tion

1 B B11 22log 5 log d, (3)1 22 B B12 21

that can be obtained by algebraic combina-
tion of Equations 1 and 2 (Davison & Tustin,
1978). Note that Equation 3 predicts that
stimulus discriminability should be indepen-
dent of changes in the reinforcer ratio. These
simulations and calculations were repeated
20 times. This entire analysis was then re-
peated using 80 trials of each stimulus for
each condition to mimic studies that have
run fewer trials (e.g., Jones & White, 1992;
Nevin et al., 2003; Sargisson & White, 2003).

Figure 1 plots the mean estimates of log d
across the 20 simulations as a function of the
logarithm of the reinforcer ratio. The left
panel shows the results using the log-linear
rule, and the right panel shows the results
using the 1s-for-0s rule. The dashed lines
show the true measures of log d, which must
be constant across changes in the reinforcer
ratio by definition (Equation 3). The filled
circles show the mean estimates of log d fol-
lowing 500 trials with each stimulus (1000 tri-
als), and the open circles show the mean es-
timates following 80 trials with each stimulus
(160 trials). Figure 1 shows that both rules
increasingly underestimated the true value of
log d as the arranged stimulus discriminabil-
ity increased, and as the reinforcer ratio be-
came more extreme. The number of trials in
the simulation also had an effect; fewer trials
produced larger underestimations, markedly
so in some cases. Overall, the 1s-for-0s rule
produced greater underestimations of the
true log d than the log-linear rule.

The systematic deviations from the true val-
ue of log d shown in Figure 1, especially as
the reinforcer ratio was varied, are a problem
for empirical analyses of behavioral models of
signal detection. Although correction rules
allow analysis of the data from conditions
when discriminability between the samples is
high, they can also introduce quite mislead-
ing interactions between parameters; any
higher-order quantitative analysis could be
compromised. In the simulations shown in
Figure 1, for example, systematic changes in
log d as a function of the reinforcer ratio
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Fig. 1. Mean discriminability between the sample stimuli (and standard errors) across 20 simulations is plotted
as a function of the log reinforcer ratio after the log-linear rule (left panel) and the 1s-for-0s rule (right panel) were
applied to the simulated data. The dashed line shows true discriminability (see text for details).

would indicate that the Davison and Tustin
(1978) model was flawed (e.g., Equation 3)
and in this case, that the data would be better
described by a model such as that of Alsop
and Davison (1991)1 (e.g., see Figure 6 of
Davison & Nevin, 1999).

The underestimation of log d at higher lev-
els of discriminability shown in Figure 1 also
has implications for signal-detection analyses
of forgetting functions from DMTS proce-
dures. In DMTS procedures, there is a delay
between the offset of the sample stimuli and
the opportunity to make the choice respons-
es. It is common to arrange a number of
these retention intervals (RIs) across trials
(e.g., 0 s, 2 s, 4 s, 8 s, and 16 s) in a quasi-
random order within each experimental con-

1 A lengthy description of this model is unnecessary for
the main purpose of this article. Interested readers
should refer to Alsop and Davison (1991) or Davison and
Nevin (1999).

dition. Short-term memory can be studied by
comparing the accuracy of performance at
the different RIs. Accuracy typically decreases
as the RI increases. The leftmost panel of Fig-
ure 2 plots illustrative forgetting functions
showing the relation between log d and RI.
The shape of such plots usually resembles
some sort of decay function, and they are of-
ten modeled as hyperbolic or exponential de-
cays. The hyperbolic decay function can be
written

h
log d 5 log d , (4)t 0h 1 t

where t is the duration of the retention inter-
val and log dt is the accuracy at time t. The
parameter log d0 estimates accuracy when t 5
0, and the parameter h measures the rate of
decay of log d0 (i.e., the half-life). The ex-
ponential decay function is similar, and it can
be written
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log d 5 log d exp(2bt), (5)t 0

where the parameter b measures the rate of
exponential decay, and the remaining nota-
tion is as above. There is no clear consensus
over which decay model better fits animals’
performance; each fits some data sets better
than the other, but often the variance ac-
counted for by Equations 4 and 5 is very sim-
ilar. In any case, Equations 4 and 5 provide
equivalent conceptual frameworks. Two pa-
rameters summarize delayed matching-to-
sample performance; the first parameter, log
d0, measures the overall difficulty of the dis-
criminations at the 0-s RI, and the second pa-
rameter, h (Equation 4) or b (Equation 5),
captures the memory component of the task
(i.e., accuracy decreasing as a function of
time).

Equations 4 and 5 are useful because they
provide a relatively precise means to deter-
mine how an independent variable affects
DMTS performance. For example, imagine
an experiment in which animals performed a
DMTS task with and without administration
of some drug. Equations 4 and 5 allow the
researcher to determine if the drug (a)
changed the overall discrimination between
the stimuli, but left the rate of forgetting un-
changed; (b) left the overall discrimination
unchanged, but altered the rate of forgetting;
or (c) changed both the overall discrimina-
tion and the rate of forgetting. The effects of
other independent variables (e.g., changing
the intertrial interval, varying reinforcer mag-
nitudes) on DMTS performance can be ex-
amined in the same way.

There is a problem with using Equations 3,
4, and 5 to plot and assess forgetting func-
tions. Short-term memory studies usually ar-
range highly discriminable sample stimuli to
avoid floor effects at longer RIs, especially if
the researchers intend to compare forgetting
functions following some change in proce-
dure or the administration of a drug. As a
result, subjects can be extremely accurate at
the shorter RIs, and may make few or no er-
rors. For example, Sargisson and White
(2003) arranged a DMTS task in which the
RIs were 0, 2, 4, 6, and 8 s, and the sample
stimuli were a green key and red key. For
each condition, they analyzed the data
summed across the last five sessions, which
gave a maximum of 80 trials at each RI. They

replicated the baseline condition four times.
The pigeons’ accuracy was extremely high at
the 0-s RI. Three of the 7 subjects never made
an error in any of the four baseline sets of
data (more than 300 trials in total), 1 subject
made one error in total, and the remaining
3 subjects made three errors in total. Obvi-
ously, this level of accuracy demands a cor-
rection rule to conduct a signal-detection
analysis; in this case the log-linear rule (K. G.
White, personal communication).

To test the effect of correction rules on the
analysis of DMTS data, Equation 4 was used
to generate a series of true hyperbolic decay
functions. The values chosen for log d0 re-
flected the extremely high accuracy that sub-
jects often show at short RIs. The maximum
value of log d0 was 3.0, which corresponds to
an error rate of about one error every 1000
trials. Although this may seem an unrealisti-
cally high level of accuracy, empirical evi-
dence indicates otherwise (e.g., Sargisson &
White, 2003). Therefore, a log d0 of 3.0 pro-
vides a reasonable upper limit. The two other
values of log d0 chosen for the analysis were
less extreme, 2.0 (about one error every 100
trials) and 1.7 (about two errors every 100
trials). To provide a crude conversion to a
more familiar metric, the three values of log
d0 cover a range of accuracy from approxi-
mately 98% correct (log d0 5 1.7) to 99.9%
correct (log d0 5 3.0). The leftmost panel of
Figure 2 plots the true values of log dt at RIs
of 0 s to 16 s for the three different values of
log d0, in each case assuming a half-life, h, of
5 s (Equation 2).

The next phase of the analysis involved
simulating performance and comparing it to
the true functions in Figure 2. The true func-
tions provided expected ratios of correct to
error responses at each RI for B11/B12 and
B22/B21. These expected ratios were convert-
ed to proportions, and then used in Monte
Carlo simulations to generate numbers of re-
sponses for B11, B12, B21, and B22 assuming
80 trials (40 of each sample stimulus) at each
RI. This was a realistic number of trials at
each RI from one condition of a DMTS ex-
periment (e.g., Sargisson & White, 2003).
These data were then adjusted using the two
correction rules. In each case, estimates of
log d (Equation 1) were then calculated at
each RI. These simulations were run 100
times, and the mean estimates of log d across
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Fig. 2. The left panel shows true functions for Equation 4 when log d0 was 3, 2, and 1.7, and the half-life, h, was
5 s. The middle and right panels show the means (and standard errors) following 100 simulations of these functions
using the log-linear and 1s-for-0s rule, respectively.

Table 1

The results of fitting hyperbolic and exponential decays (Equations 4 and 5) to the forgetting
functions produced by the simulations using either the log linear rule or the 1s-for-0s rule.

True values

Log d0

Half-
life

Hyperbolic fits (Equation 4)

Simulations
with log linear

Log d0 Half-life VAC

Simulations
with 1s-for-0s

Log d0 Half-life VAC

Exponential fits (Equation 5)

Simulations
with log linear

Log d0 b VAC

Simulations
with 1s-for-0s

Log d0 b VAC

3.00
2.00
1.70

5.0
5.0
5.0

2.04
1.83
1.61

10.0
5.9
5.7

0.96
0.99
0.99

1.77
1.71
1.58

14.9
7.3
6.4

0.91
0.97
0.99

1.97
1.69
1.47

0.07
0.09
0.09

0.99
0.98
0.96

1.74
1.62
1.47

0.05
0.08
0.09

0.96
0.99
0.97

these simulations are plotted as a function of
RI in the middle (log-linear rule) and right-
most (1s-for-0s) panels of Figure 2.

Figure 2 shows that the forgetting func-
tions obtained from the simulations with cor-
rections for zero errors differed markedly
from their respective true functions. In par-
ticular, the simulations consistently underes-
timated log dt at shorter delays for the func-
tions in which the true log d0 was 3.0 and 2.0.
It is clear that, in this example, the obtained
forgetting functions provided a misleading
representation of true performance, and that
any conclusions based on the shape of these
functions would require caution.

The differences between the true functions
and the corrected simulations were also evi-
dent in quantitative analyses of the data in
Figure 2. Table 1 shows the parameter esti-
mates obtained after Equation 4 and Equa-
tion 5 were fitted to the results of the simu-
lations using the Solver feature of MSExcelt.
The true values (i.e., those used to generate
the three functions in the leftmost panel of
Figure 2) varied log d0 and held the half-life,
h, constant. The parameter estimates ob-
tained from fits to the simulations painted a
different picture. For the simulations with the
log-linear rule applied, the fits suggested that
the functions differed in terms of both log d0
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and h. For the simulations using 1s-for-0s
rule, the situation was more extreme. The
major difference among the three functions
was in terms of the half-life, h, whereas the
estimates of log d0 were relatively similar; that
is, the simulations obtained the opposite re-
lation to that used to generate the true func-
tions.

Figure 2 and Table 1 pose problems for re-
search that uses Equation 4 or Equation 5 to
evaluate the effects of various interventions
on animal short-term memory. Consider the
earlier example of a study that investigated
the effects of a drug on DMTS performance.
Let us assume that, in reality, a certain drug
had no effect on the rate of forgetting (h in
Equation 4), but it caused a small decrease in
overall accuracy on the task, log d0, by low-
ering motivation or attention. In other words,
the true effect of the drug is similar to the
difference between the functions with log d0
5 3.0 and log d0 5 1.7 shown in the leftmost
panel of Figure 2. The results of the present
analysis, however, indicate that an actual ex-
periment could obtain results similar to the
simulations with the two correction rules
(Figure 2, Table 1); that is, the researchers
would find that the drug had a significant ef-
fect on the rate of forgetting, and little or no
effect on overall accuracy—the opposite of
the true effect. Notice that in this hypotheti-
cal example the problem arises more because
the baseline condition has been incorrectly
estimated rather than any difficulties with the
drug condition.

The experiment by Sargisson and White
(2003), mentioned earlier, provides a hypo-
thetical example of what might occur when
correction rules must be relied upon. Their
baseline conditions arranged five RIs (0 s, 2
s, 4 s, 6 s, and 8 s), and reinforcers for correct
responses were delivered immediately. They
compared these baseline conditions with con-
ditions in which reinforcers for correct re-
sponses were delayed. Figure 3 (left panel)
shows the mean results from the baseline
conditions and the conditions with the most
extreme reinforcer delay (i.e., 8 s). Sargisson
and White’s analysis found that the rate of
decay was greater at longer reinforcer delays
than shorter reinforcer delays. This was an
important empirical finding because it was in-
consistent with the predictions of one model
(i.e., Davison & Nevin, 1999), but it was con-

sistent with a modified version of White and
Wixted’s (1999) competing model. This con-
clusion requires caution, however. As previ-
ously discussed, accuracy at the shortest delay
during baseline was, for practical purposes, at
ceiling, and this ceiling was determined large-
ly by the number of trials (40 per stimulus)
and the type of correction rule employed
(e.g., Figures 1 and 2). To illustrate this point,
Sargisson and White’s data were reanalyzed
but the values for B11, B12, B21, and B22 were
projected to 1000 trials per stimulus by mul-
tiplying each response value by 25. Although
this projection altered the absolute numbers
of responses, it preserved the obtained ratio
of responses in each case. Figure 3 (right pan-
el) shows the results of these projections. Al-
though the estimates of discriminability at the
4-s, 6-s, and 8-s RIs were very similar across
the two panels, the estimates at the shorter
RIs were noticeably greater for the projected
data, and more important, the difference be-
tween discriminability at the shorter RIs was
about twice that obtained at the longer RIs;
in other words, the rate of decay for the 0-s
reinforcer conditions had increased and the
two functions were more consistent with the
predictions of Davison and Nevin. This is not
to say that Sargisson and White’s original con-
clusions were necessarily wrong. If they had
extended actual training for as many trials as
the projected data, their results might have
been unchanged. The important issue is that
the low number of trials at each RI and high
overall accuracy in their study makes it diffi-
cult to establish any firm conclusions. Cor-
rection rules allowed some sort of analysis,
but not a particularly convincing one.

It is unclear to what extent previous re-
search might have reached questionable con-
clusions because of correction rules. Some
studies do not provide sufficient data to de-
termine whether there has been a problem
with zero error rates or not. Other studies do
not report how they dealt with the issue of
zero errors. Even in cases in which informa-
tion concerning correction rules is provided,
there is still a problem; there is no way of
knowing what the underlying true functions
were in those studies (e.g., Figures 1 and 2).
The conclusions of studies that used a cor-
rection rule could be correct, but they could
as easily be completely wrong, and there is no
obvious way to distinguish between the two.
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Fig. 3. The left panel plots mean discriminability as a function of retention interval separately from conditions
with a 0-s reinforcer delay and an 8-s reinforcer delay (Sargisson & White, 2003). The right panel plots the same
functions when the number of trials per stimulus was projected to 1000.

As a rule of thumb, any forgetting function
should be treated with caution when the
mean accuracy at the shortest RI is at, or close
to, the maximum calculable accuracy given
the number of trials. Under these circum-
stances, it is likely that all or some of the sub-
jects’ data required corrections, and that the
shape of the function and any derived higher-
order parameter estimates (Equations 4 and
5) could be misleading.

There is no easy solution for this analytical
problem, but an important contributing fac-
tor is the number of trials on which calcula-
tions are based. For example, an experiment
might arrange 80 to 100 trials each session
and analyze response totals over the last five
sessions. Although this sums to 400 to 500 tri-
als, this total is a little misleading. If, as is
often the case, there are several different RIs
arranged within each session, the number of
trials at each RI remains modest (e.g., Sargis-

son & White, 2003). Figure 4 plots the true
function and the means following 100 sets of
simulations of 80 trials at each RI using the
log-linear rule (Figure 2) and adds plots of
the means following 100 sets of simulations
following 200 and 500 trials at each RI. Great-
er numbers of trials decreased the discrep-
ancy between the true function and the sim-
ulations, and so reduced the chances of
reaching an erroneous conclusion. It did not
completely remove the risk, however.

The effect of the number of trials on the
shape of forgetting functions (Figure 4) also
might contribute to the debate concerning
whether exponential or hyperbolic decay
models better describe DMTS performance.
Studies that prefer the hyperbolic decay func-
tion often have arranged only one retention
interval per condition, and then have run
four or five conditions to arrange enough re-
tention intervals to fit a forgetting function
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Fig. 4. Discriminability is plotted as a function of retention interval for the true function and for simulations
using different numbers of trials per simulation.

(e.g., Harnett, McCarthy, & Davison, 1984).
This means that there were several hundred
trials per retention interval. Studies that pre-
fer the exponential decay function have typ-
ically used a mixture of retention intervals in
one condition (e.g., Sargisson & White,
2003). Although this allows a quick determi-
nation of a forgetting function, it reduces the
number of trials per retention interval. Con-
sider Figure 2, in which a hyperbolic decay
function was used to generate the simulated
functions. Despite this fact, Table 1 shows
that the hyperbolic decay model (Equation 4)
did not always provide the best fit following
the simulations with 80 trials per retention
interval; at higher discriminabilities, the ex-
ponential function (Equation 5) accounted
for a greater proportion of the variance in
the data.

REINFORCER CONTROL IN DETECTION AND

DELAYED MATCHING-TO-SAMPLE

PROCEDURES

The previous section focused on the effects
of correction rules on quantitative analyses of
the discriminability between sample stimuli.
Here I will consider the effect of correction
rules on estimates of response bias, the ten-
dency of a subject to favor one response over
the other irrespective of the sample stimuli.
A response bias can be produced in a con-
ditional discrimination or a DMTS procedure
by reinforcing one response alternative more
frequently (or with larger reinforcers) than
the other (e.g., McCarthy & Davison, 1979).

Algebraic combination of Equations 1 and
2 shows that the generalized matching law de-
scribes how response bias should change as
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Fig. 5. Response bias is plotted as a function of the log reinforcer ratio for the true values (dashed line) and
after the log-linear rule (left panel) and 1s-for-0s rule (right panel) were applied to simulated data (see text for
details).

reinforcer ratios are varied across conditions
(Davison & Tustin, 1978). This is usually pre-
sented in its logarithmic form,

1 B B R11 21 11log 5 a log 1 log c, (6)1 2 1 22 B B R12 22 22

where all notation is as above. Equation 6
makes two important predictions. First, it pre-
dicts that, for a given level of stimulus dis-
criminability, there is a linear relation be-
tween response bias and the reinforcer ratio.
Second, it predicts that the relation between
response bias and the reinforcer ratio should
be independent of changes in stimulus dis-
criminability (d in Equations 1 and 2).

To test the effect of correction rules on the
linearity of Equation 6, Equations 1 and 2
were used to generate values of B11, B12, B21,
and B22 when d 5 100, a 5 0.9, and the re-
inforcer ratio varied from 300:1 to 1:300. This
was done to produce a series of values for 20
simulations assuming 160 trials per condition,
and a series of values assuming 800 trials per
condition. The log-linear rule and the 1s-for-
0s rule were applied to these values and to
the results of the simulations in the manner
described above.

Figure 5 plots the predicted relation (Equa-
tion 6) between response bias and the rein-

forcer ratio (dashed line), and the obtained
relations following application of the log-lin-
ear rule (left panel) and the 1s-for-0s rule to
the simulations (right panel). Following both
correction rules, the simulated data show an
orderly ogival deviation from the predicted
line. Fewer trials per simulation led to greater
deviations. Although the deviations were
more pronounced at more extreme reinforc-
er ratios, the separation was apparent at re-
inforcer ratios commonly arranged in detec-
tion experiments (i.e., 21 , log (R11/R12) ,
1). Taken at face value, the simulations in Fig-
ure 5 would indicate that Equation 6 was
wrong because the obtained relations were
not linear. In fact, the ogives shown in Figure
5 are more consistent with predictions of Al-
sop and Davison’s (1991) model of detection
(for example, see Figure 6 of Davison & Nev-
in, 1999) than Equation 6.

To test the effect of the correction rules on
the independence between sensitivity to the
reinforcer ratio (a in Equation 6) and dis-
criminability, Equations 1 and 2 were used to
generate values of B11, B12, B21, and B22 for
five different reinforcer ratios (9:1, 3:1, 1:1,
1:3, 1:9) for each of thirteen different levels
of stimulus discriminability (i.e., d 5 1, 2, 4,
7, 10, 20, 40, 70, 100, 200, 400, 700, or 1000).
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Fig. 6. Sensitivity to the reinforcer ratio is plotted as a function of the discriminability between the sample stimuli
for the true values (dashed line) and after the log-linear rule (left panel) and 1s-for-0s rule (right panel) were applied
to simulated data (see text for details).

At each level of discriminability, Equation 6
was fitted to the hypothetical data from the
five different reinforcer ratios. These simula-
tions were run 20 times assuming 1000 trials
per condition, and assuming 160 trials per
condition.

Figure 6 plots the mean sensitivity of be-
havior to changes in the reinforcer ratio (i.e.,
a in Equation 6) as a function of assigned
stimulus discriminability (log d). The dashed
line shows the true value of a, which is 0.9
across levels of discriminability by definition.
The simulations, on the other hand, show an
inverse relation between discriminability and
sensitivity to the reinforcer ratio. For the sim-
ulations of 160 trials per condition, this effect
was readily apparent at reasonably modest
levels of discriminability (i.e., log d . 1). For
the simulations of 1000 trials per condition,
this covariation was most pronounced at
higher levels of discriminability (i.e., log d .
2).

The results of the simulations shown in Fig-
ure 6 show a correlation between parameters
that, in theory, should be independent (Dav-
ison & Tustin, 1978). Such a failure of param-
eter invariance usually indicates that the un-
derlying model is incorrect (e.g., Nevin,

1984). Data from an actual experiment that
looked like the simulations in Figure 6 prob-
ably would be interpreted as inconsistent with
Davison and Tustin’s behavioral model of sig-
nal detection, and more consistent with a
model such as Alsop and Davison (1991).

Jones and White (1992) conducted an ex-
periment that can be examined in light of the
results shown in Figure 6. Their pigeons per-
formed a DMTS task with four different RIs
arranged in each condition. Across condi-
tions, Jones and White varied the relative dis-
tribution of reinforcers for the two types of
correct response. They used Equation 6 to
analyze the effect of changes in the reinforcer
ratio on response bias at each RI, and they
used the 1s-for-0s rule for instances of zero
errors. The relation between sensitivity to re-
inforcement, a, and discriminability, log d, is
shown in Figure 7 (left panel). There was a
significant decrease in a as log d increased,
consistent with both the Alsop and Davison
(1991) and White and Wixted (1999) models
of signal detection. A similar result was ob-
tained using the log-linear rule (Figure 7,
middle panel). There were, however, only 80
trials per RI for each stimulus. To assess what
effect this relatively low number of trials
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Fig. 7. The left panel plots sensitivity to the reinforcer ratio (a in Equation 6) as a function of discriminability
following the 1s-for-0s rule for Jones and White’s (1992) data. The middle panel shows the same data following the
log-linear rule. The right panel shows the results when the number of trials per retention interval was projected to
1000. The different symbols represent the parameter estimates from individual subjects.

might have on the analysis, projected data for
1000 trials per RI for each stimulus were cre-
ated in the same manner to those shown in
Figure 3. These data were analyzed using the
log-linear rule, and Figure 7 (right panel)
shows the results. Now there is no clear evi-
dence of an interaction between sensitivity to
the reinforcer ratio and stimulus discrimina-
bility. This projection and analysis requires
the usual caveat. If Jones and White had run
more trials, they might still have obtained the
interaction shown in the left panel of Figure
7; there is no definitive way to separate the
pigeons’ actual performance from the con-
tribution of the correction rule.

CONCLUSIONS

Extreme conditions are useful for compar-
ing models because these are the situations
in which models often make clearly distin-
guishable predictions. Unfortunately, in the
case of conditional discriminations and
DMTS procedures, these conditions increase
the likelihood of ceilings on performance
(i.e., zero errors). If all that is needed is an
ordinal comparison between two parameter
estimates, then a technique such as the log-
linear rule usually can be applied with some
confidence. If, however, more sophisticated
quantitative analyses are required, analyses
for which absolute values are important (e.g.,
Equations 1 to 6), then correction rules can
be false friends. In terms of the signal-
detection analyses, the true functions gener-
ated by the Davison and Tustin (1978) model

predicted an independence of discriminabil-
ity with changes in the reinforcer distribution
(Equation 3), a linear relation between
response bias and the reinforcer ratio (Equa-
tion 6), and an independence between sen-
sitivity to the reinforcer ratio and discrimi-
nability (Equation 6). The simulations found
that discriminability covaried with changes in
the reinforcer distribution (Figure 1), the re-
lation between response bias and the rein-
forcer ratio was an ogive (Figure 5), and sen-
sitivity to the reinforcer ratio was inversely
related to discriminability (Figure 6). In
terms of DMTS performance, hypothetical
functions with identical rates of decay and dif-
ferent initial discriminabilities were trans-
formed into functions with similar initial dis-
criminabilities and different rates of decay
(Figure 2, Table 1).

It is virtually impossible to identify those
past studies whose results were definitely af-
fected by the use of correction rules. First,
the raw data are not always available, and the
authors do not always state how they dealt
with any problems concerning zero errors.
Second, even if it was clear that a correction
rule had been used, there is no clear way of
determining how badly the results were af-
fected. For example, the projected data in
Figures 3 and 7 only show what might have
been the case for Sargisson and White’s
(2003) and Jones and White’s (1992) studies.
The projected data do not provide a defini-
tive reanalysis. That said, the simulations in
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Figures 1, 2, 4, 5, and 6 indicate that results
from past studies that arranged relatively few
trials per data point and obtained high levels
of accuracy probably require some caution;
there is a real risk of drawing misleading con-
clusions.

How should behavioral models of signal de-
tection (or related work with conditional dis-
criminations) address the issue of zero errors
at higher discriminabilities? There is no
straightforward answer. Figures 1, 4, 5, and 6
clearly indicate that running a large number
of trials per data point will attenuate the
problem. If an experimenter wants to com-
pare the predictions of models at extreme
conditions, the simulations indicate that one
or two thousand, rather than a few hundred,
trials are necessary. Even under these condi-
tions, a correction rule could introduce de-
viations in the data, but at least these effects
will be smaller. Another strategy is to avoid
conditions in which extreme performance is
likely, unless such conditions are crucial for
the experimental question. For example, a
subject discriminating between stimuli with
log d 5 1.7 and showing no response bias
would be correct on about 98% of the trials;
in other words, it would only make about 20
errors every 1000 trials. At such low error
rates, a small degree of variability in perfor-
mance can produce quite large changes in
derived parameters, and of course, the prob-
lem simply gets worse at higher discrimina-
bilities.

Throughout the present article, a number
of different models of detection (Alsop &
Davison, 1991; Davison & Tustin, 1978; White
& Wixted, 1999) and DMTS performance
(Equations 4 and 5) have been mentioned.
The present article is not intended to pro-
mote one of these models over the others.
The Davison and Tustin (1978) model was
used as the basis for generating true func-
tions because it makes very clear predictions
and it is probably the model with which most
readers are most familiar. The finding that
deviations in the simulated data were ordi-
nally consistent with the Alsop and Davison
model (e.g., Figures 1, 5, and 6) suggests that
experiments trying to distinguish between
this model and Davison and Tustin’s model
require particular care. Likewise, quantitative
comparisons of DMTS performance and
models need a degree of caution. The log-

linear rule and the 1s-for-0s rule provide, at
best, an educated guess about what data
might look like, and need to be recognized
as such.
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